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— HIGHLIGHTS —

— BACKGROUND —

(1) — for each G and g = Lie(G), 3 quantum groups of two types,
say “type Un(g)" and “type Fi[[G]]" — called QUEAs and QFSHAs

(2) — linear duality yields an antiequivalence Uy(g) «~ Fi[[G]]
between QUEAs and QFSHASs, “upon the same pair” (G, g)

(3) — 3 equivalence between QUEAs and QFSHAs which

“lifts” the Poisson duality (G,g) «~ (G*,g*) between
pairs (K,t) of Poisson Lie groups & Lie bialgebras

— [GoaL] —

Replace the words “groups” & "“Lie algebras” with “groupoids & Lie algebroids"...

...then try and achieve the same as (1)—(2)—(3) above for “quantum groupoids”.
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WHAT’S OLD: QUANTUM GROUP CASE

[1] — Classical setup: G = (formal) Lie group, g = Lie(G)

algebraic U HOpf algebra
(G.0) { (9) g

F[[G]] (topological) Hopf algebra

description

FACT: 3 linear (Hopf) duality yielding an antiequivalence U(g) «~ F[[G]]
ie. F[[G]]= U(g)" (full dual) & U(g) X F[[G]]* (topological dual)

Poisson structures: recall that
G has a Poisson group structure g has a Lie bialgebra structure
i.e., F[[G]] has a Poisson bracket i.e., g has a Lie cobracket
Then Poisson duality holds, namely
gis a Lie bialgebra <= g"is a Lie bialgebra
and for (formal) Lie groups we have

Gis a Poisson (formal) Lie group <= G is a Poisson (formal) Lie group

Fabio Gavarini (Universita di Roma “Tor Vergata”) Duality functors for quantum groupoids London, 13 July 2023 3/17



[2] — Quantum setup (a la Drinfeld)

To (G, g) as above, we associate quantum groups as follows:
Ui(g) := h—adic (topological) Hopf algebra over k[[h]] ~~ called QUEAs

such that Un(g) = Uh(g)/ﬁ Un(g) = U(g)

h=0

Fi[[G]] := Ir—adic (topological) Hopf algebra over k[[i]] ~» called QFSHAs

such that - F((G]| = RG] /AFIIG] = FIG]

FACT: 3 linear (Hopf) duality yielding an antiequivalence Uy(g) «~ Fi[[G]]
ie.  Fi[[G]] = Un(g)" (full dual) &  Un(g) = R[[G]]* (topological dual)

antiequivalence

so (QUEA) (QFSHA) via Un(g) — Un(g)" & Ful[G]]— Fa[[G]]"

where (QUEA) := category of all the QUEAs
and (QFSHA) := category of all the QFSHAs
N.B.: this is a sheer “lifting” at the quantum level of the classical linear duality

Fabio Gavarini (Universita di Roma “Tor Vergata”) Duality functors for quantum groupoids London, 13 July 2023 4/17



[3] — Semiclassical structures: Quantum —> Poisson

Every quantisation of (G, g) defines a Poisson structure on the latter, namely:

(F) — given Fi[[G]], a Poisson bracket { , }: F[[G]]® F[[G]] — F[[G]] is
defined on F[[G]] by

1 gt /gl f/7élth[[G]] :
{f,e} = % (mod h) VY f,L€F[[G]], f (modh) = f
¢ (mod h) = ¢

(U) — given Un(g), a Poisson cobracket §: U(g) — U(g) ® U(g) is defined on
U(g) — hence a Lie cobracket 6 : g —> g®g ong — by

5(t) = w (mod h)  Vite U(g), v i/mi:;()g)—:t

N.B.: this Poisson structure on (G, g) is the “semiclassical limit” or the

“specialisation” of the given quantisation of the geometric object (G, g)
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[4] — The Quantum Duality Principle (=QDP) for quantum groups

Rmk: the result is due to Drinfeld — | am accountable only for proofs and termino-
logy; other similar, loosely related claims also appeared in literature, here and there.

Theorem: (QDP for quantum groups — cf. [Dr], [Gal]) |
)

There exists an explicit equivalence (QUEA) (QFSHA) such that
)Y
Un(g) — Ur(g)’ which is a QFSHA for the dual Poisson group G*
and
Fi[[G]] — Fu[[G]]Y which is a QUEA for the dual Lie bialgebra g*

with the functors ()’ and ()" being quasi-inverse to each other.

IDEA: at the classical level, we have two antiequivalences, namely
Hopf duality U(g) «~ F[[G]] & Poisson duality (G,g) «~ (G*,g*)

At the quantum level, the QDP “blends together” these (classical) antiequivalences.
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— REMARKS —

(1) apart from the previous IDEA, there is no such thing as a “semiclassical
counterpart of the QDP” — in this respect, indeed,

the QDP is a “purely quantum” phenomenon.
(2) there exist several, widespread variations & consequences/applications of the QDP,
e.g. to “polynomial” (rather than “formal”) quantum groups (a la Jimbo & Lusztig, say),

to Poisson homogeneous spaces, etc. — see [Ga2], [CiG1], [CiG2], [CFG], [EK].

(3) the QDP “behaves well” with respect to linear (Hopf) duality, in that

Un(g) o AIIG]] == Ui(g)" ~ RllG]]"

that is
Un(g) = RG] Un(g) = (AlIGTY)"
Un(9)" = FillG]] (Un(e))" = RillGTT
Fabio Gavarini (Universita di Roma “Tor Vergata”) Duality functors for quantum groupoids London, 13 July 2023

7/17



WHAT’S NEW: the RISE of QUANTUM GROUPOIDS

— Classical setup: I" a Lie groupoid, G = Lie(I") a Lie algebroid ——

Igebraicall - — .. p
R (finite projective) Lie-Rinehart algebra L over a commutative k—algebra A

3 Ax L — £ module structure, [, ]:Lx L — L k-linear Lie bracket
w : L — Deri(A) *“anchor” map, & compatibility axioms
then

c algebraic { V(L) left universal enveloping algebroid — a left bialgebroid

description

J'(L)  right jet space/algebroid — a right bialgebroid

FACTS: (a) everything extends by left/right symmetry: for the same L, there exists
also V"(L), resp. J(£), which is a right bialgebroid, resp. a left bialgebroid.

(b) linear duality connects V“(L) v J(L£) and V(L) e~ JYL) .

Poisson structures: 3 notion of “Lie-Rinehart bialgebra” given by either

L is Lie-Rinehart algebra N L is Lie-Rinehart algebra
& F6:A—L & 6:L— LAL ===== & L"is Lie-Rinehart algebra
& compatibility axioms & compatibility axioms

s~ Poisson duality: L is Lie-Rinehart bialgebra <= L is Lie-Rinehart bialgebra
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— Quantum setup: to L as above, we want to associate quantum groupoids...

V,f/r(ﬁ) — Ping Xu introduced in [Xu] the first type of “quantum groupoid” over £,

namely Left Quantum Universal Enveloping AlgebroiD (=LQUEAD), as
V(L) = a left bialgebroid over Ay such that
An = A[[R]] as topological k[[h]]-module, Ar,,/hAh, >~ A as k—algebra

Vi(e) = V)] Vi)
as topological k[[h]]-module

= v,f(ﬁ)/h VE(L) = V(L)

h=0
as a left bialgebroid over A

Remarks: (a) Xu also introduced twist(or)s for LQUEADSs, and deformations by them.

(b) 3 also the “right version” of this notion, namely a right bialgebroid Vj(L) over
Ap, such that [...] called “right QUEAD".

Notation: We denote by (LQUEAD)A the category of all LQUEADs over A, and
h

by (LQUEAD) the category of all the LQUEADs. Similarly, the categories of their
“right”” siblings are denoted (RQUEAD), and (RQUEAD).
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J;L/Z(E) — Chemla & G. introduced in [ChG] the second type of “quantum groupoid”

over £, namely Right Quantum Formal Series AlgebroiD (=RQFSAD), as
Ji(L) := a right bialgebroid over A such that
Ar = A[[R]] as topological k[[h]]-module, Ah/hAh >~ A as a k-algebra

In(£) = J(L)([A]] In(£)
as topological k[[h]]-module

= () Jni(e) = s

as a right bialgebroid over A

Remark & Notation: 3 also the “left version”, a left bialgebroid Jf(L) over A; such
that [...] called “left QFSAD". Their categories are (RQFSAD)Ar and (LQFSAD) .

—_ @ Half-Hopf nature of quantum groupoids é% —

All “classical” bialgebroids V*/"(£) and J//*(L) are actually more, as they are left and
right Hopf left/right bialgebroids —=- this property is automatically inherited by any
one of their quantisations V;/"(£) and J;/*(£) —

in short, all quantum groupoids are left & right Hopf left/right bialgebroids.

Fabio Gavarini (Universita di Roma “Tor Vergata”) Duality functors for quantum groupoids London, 13 July 2023 10/17



— Semiclassical structures from specialisation: Quantum —- Poisson

FACT: Every quantisation of L defines a Poisson (i.e., Lie-Rinehart bialgebra)
structure on L itself, namely:

(V) — given V;f/'(ﬁ), a Poisson cobracket & : V¥/"(L) — V(L) @ V(L) is
defined on V*/"(L) — hence a Lie cobracket 6 : A— £ and §: L — L L — by
the same recipes as for Ux(g) in the case of QUEAs: it works the same because again
(roughly) “V,f/'(ﬁ) is cocommutative modulo 1", see [Xu]

(J) — given J;L/Z([,), a Poisson bracket { , }: J7Y(L)® J7H(L) — J7HL) is
defined on J/*(L) by the same recipes as for Fz[[G]] in the case of QFSHASs: it works

the same because again (roughly) “J,'l/g(ﬁ) is commutative modulo ", see [ChG]

N.B.: again, this “Poisson structure” on L is again called “semiclassical limit”

or the “specialisation” of the given quantisation of it.
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Izl — | Linear duality for quantum groupoids (cf. [ChG]) |

@ Quantum groupoids are defined over Ay, possibly non-commutative ——
= there exist (topological) left dual and right dual, that may be different =
== the theory of “(linear) dualisation” is richer and tougher.

Nevertheless, we do get what we expect, in the best possible formulation:

THEOREM 1: (duals of quantum groupoids — cf. [ChG])

Let £ be a Lie-Rinehart bialgebra, and £ its coopposite.
(a) Both right & left duals of any LQUEAD for £ are RQFSADs for £ and L, i.e.
VE(L)" isa RQFSAD for £ & Vi(L), is a RQFSAD for £
Ditto for left & right duals of any RQUEAD for £ being LQFSADs for £ and £ .
(b) Both left & right duals of any RQFSAD for £ are LQUEADs for £ and L, i.e.
«Ji (L) is a LQUEAD for £ & *Jh(L) is a LQUEAD for £
Ditto for right & left duals of any LQFSAD for £ being RQUEADs for £ and £ .
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Moreover, the construction of duals is functorial, and composing twice fits well (!),
hence in the end we get

COROLLARY 2: (antiequivalence of quantum groupoids — cf. [ChG]) ’

Taking left / right (topological) duals yields a bunch of antiequivalences, quasi-inverse
to each other, between categories of quantum groupoids of “type V" vs. “type J", e.g.
()"

—_—

. V(L) — Vi(L)
given by

LQUEAD
( ) An (L) — Jn(£)

- (RQFSAD)
«()
as well as all the sibling cases, involving the other categories.

Ditto for the larger categories when we drop the subscript “Ap" .

Remark: the situation here is quite similar to that for quantum groups, BUT for:

— the “left/right duplicity”, both for the bialgebroids and for their duals, that implies
that we have to keep track of and cope with a variety of objects,

— every single steps is technically much more demanding: no new ideas are needed,
but to make them work is way more cumbersome.
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IE — |Quantum Duality Principle (=QDP) for quantum groupoids (cf. [ChG]) |

GOAL: find explicit equivalences — quasi-inverse to each other — of type
() )
_— _—
(LQFsAD), &  (RQUEAD) (RQFSAD),
)Y )Y
that extend the QDP for quantum groups, in particular mapping any quantization (of
either type) of £ to a quantization (of the other type) of its dual L*

(LQUEAD)Ar

1

THEOREM 3: (QDP for quantum groupoids — cf. [ChG]) ’

There exist explicit equivalences, quasi-inverse to each other,
) )

—_— —_—
(LQuEAD), (LQFsAD), &  (RQUEAD) (RQFSAD),
() ()
s. t. V,f/'(ﬁ), is a (L/R)QFSAD for the dual Lie-Rinehart bialgebra £*
and

J,f;/'(ll)v is a (L/R)QUEAD for the dual Lie-Rinehart bialgebra £*

Ditto for the larger categories when we drop the subscript “As" .
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— IDEA of the PROOF —

Jf;/'(ﬁ) — Jf;/'(ﬁ)v — |EASY!...| In the quantum group setup, the recipe

defining Fi[[G]]" requires multiplication and counit map: both are available for
quantum groupoids too, hence — up to technicalities — the old strategy applies again.

Vrf/'(ﬁ) — V,f/’(ﬂ)/ — |HARD ﬁ% In the quantum group setup, the recipe

defining Un(g)’ requires comultiplication and unit map == the latter provides a key

ingredient, namely a (direct) complement to Ker(¢€) in Us(g). BUT for any V,f/'(ll)

there exists no (direct) complement to the (Aﬁ ® A;p)—submodule Ker(€) in Vs/'(ﬁ)
——= ...we need another approach!

IDEA: Inspired by Un(g) = (Fh[[G]]V)* in the quantum group case,
we define V//"(£)" as “the dual” to J/"(£)", with J"(L) = “dual” of V'/"(L)
...YET there are two duals, hence we have two “candidates” for the role of fo/'([,)/

——= some extra work proves that the two “candidates” do coincide, thus giving
’
ONE single V,f/r(ll) — the rest is just skillful handicraft, stressing yet workable.
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— % Final EXTRAs + —

(a) The QDP for quantum groupoids do “behave well” with respect to linear duality
— yet, in the paper we did not fill in details...

(b) In the paper we also provide a concrete example. Namely, we consider

— g:=k.es ®k.ex with [el , ez] = e; (2—dimensional, non-Abelian Lie k—algebra),

— L := Der (5(9)) as a Lie-Rinehart algebra over A := 5(g),

— Ap:=A[0]] = (S(g))[[ﬁ]] with deformed product s.t. e; xe; —exx ey = hey,

— VYL)[[A]] := V*(Der (S(g)))[[1]] = the h-adic completion of V*(L),

— F e VY[R ® VEL)[[R]] a suitable, explicit twist(or) for V*(L)[[R]],

— VAR := VY(L)[[h]] endowed with the left As—bialgebroid structure
obtained by the standard one (induced from V*(L)) via deformation by the twist(or) F .

For this specific example of V,f(ﬁ) — a LQUEAD which is simple enough, yet
definitely non-trivial — we compute both duals Vi/(£), and V£(L£)", as well as V(L)'

*
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