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For Hopf algebra, the notion of integral was introduced by Sweedler
(1969) and Larson-Sweedler (1969) proved their theorem for Hopf
modules.

What is a Hopf algebra over a non necessarily basis?

o Hopf algebroids in the sense of Bohm (Lu, Bohm-Szlachanyi ,
etc...) : An antipode is assumed to exist. Integral theory was
studied by Bohm (2005).

o xa-Hopf algebras (in the sense of Schauenburg ) or left Hopf
algebroids. An antipode is not required to exist but for any
element h, the element h;y ® S(h,). Can be seen as Hopf
monads and integral theory was developped by
Bruguieres-Virelizier (2007).

Hopf algebroids are left Hopf algebroids but the converse is not true
in general (see Krahmer-Rovi 2015).
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We will extend some results of Bohm to left Hopf algebroids thanks
to a recent result of Schauenburg (explicit formulas given by
Kowalzig). We will characterize left Hopf algebroids that are a
(quasi)-Frobenius extension of their basis.

Many author have studied relations between Hopf algebras and
Frobenius algebras : Pareigis, Bohm-Nill-Szlachanyi, Bohm,
lovanov-Kadison, Balan, Saracco, etc...
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o k will be a field and A will be a k-algebra with unit. Unadorned
tensor products are tensor products over k.

o An A-ring (H, u,n) is a monoid in the monoidal category
(A°-Mod, ®a, A) of A®-modules fulfilling the associativity and
the unitarity conditions.

o ( Bohm ) A-rings H correspond bijectively to k—algebra
homomorphisms ¢ : A— H. An A-ring H is endowed with an
A¢-module structure:

Vhe H, abeH, a-h-b=.(a)h(b).

@ An A-coring C is a comonoid in the monoidal category of
A¢-modules satisfying the coassociativity and the counitarity
conditions. As usual, we adopt Sweedler's ¥ —notation
A(c) = ciy®cpp) or Alc) =cP@c®? for ce C.
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For an A° = A® A°-ring U given by the k-algebra morphism
n : A® — U, consider the restrictions
si=n(-®1l):A->Uand t:=n(l,®—): A% - U,
called source and target map, respectively. Thus an A®-ring U carries
two A-module structures from the left and two from the right, namely
aru<b:=s(a)t(b)u, aru<b:=ut(a)s(b), Va,be Aue U.

If we let U.®,.U be the corresponding tensor product of U (as an

A¢-module) with itself, we define the (left) Takeuchi-Sweedler

product as

UxaU = {3u@u € URuU | X (aru)®u} = ¥,u;Q(uj«a), Va e A}
(0.1)

By construction, U, x,.U is an A°-submodule of U.®,.U; it is also

an A®-ring via factorwise multiplication, with unit 1, ® 1, and

77U<1><A>U(a ® 5) = s(a) ® t(é)-

Sophie Chemla (Sorbonne Université) Left Hopf algebroid-(quasi)-Frobenius London, July 2023 5/35



For an A° = A® A°-ring U given by the k-algebra morphism
n : A® — U, consider the restrictions

s=n(-®1,):A->UVUandt:=n(l,®—): A® - U,

called source and target map, respectively. Thus an A®-ring U carries
two A-module structures from the left and two from the right, namely

aru<b:=s(a)t(b)u, aru<b:=ut(a)s(b), Va,be Aue U.
If we let U.®,.U be the corresponding tensor product of U (as an
A¢-module) with itself, we define the (left) Takeuchi-Sweedler
product as
UxaU = {3u@u € URuU | X (aru)®u} = ¥,u;Q(uj«a), Va e A}

(0.1)
By construction, U, x,.U is an A°-submodule of U.®,.U; it is also
an A®-ring via factorwise multiplication, with unit 1, ® 1, and
77U<1><A>U(a ® 5) = s(a) ® t(é)-
Can also define the right Takeuchi-Sweedler product as U, x,,U,
which is an A®-ring inside U. ®4 ,U.
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Definition
(Takeuchi ) A left bialgebroid (U, A) is a k-module U with the
structure of an A°ring (U, s, t) and an A-coring (U, A, €) subject
to the following compatibility relations:

@ the A°-module structure on the A-coring U is that of . U.;

@ the coproduct Ay is a unital k-algebra morphism taking values in

UsxaU;
@ foralla,be A, u,u' € U, one has ¢(1y) = 14 and :

e(avu<b) = ae(u)b, e(ut') = e(ue(u)) = e(e(u') »u). (0.2)
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A morphism between left bialgebroids (U, A) and (U, A’) is a pair
(F,f)of maps F: U - U’, f : A— A’ that commute with all
structure maps in an obvious way.

Remark

Szlachanyi has shown that left bialgebroids may be interpreted in
terms of bimonads.
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A morphism between left bialgebroids (U, A) and (U, A’) is a pair
(F,f) of maps F: U — U, f : A— A’ that commute with all
structure maps in an obvious way.

Remark

Szlachanyi has shown that left bialgebroids may be interpreted in
terms of bimonads.

The notion of a right bialgebroid is obtained from that of left
bialgebroid exchanging the role of >, < and »,«. Then one starts with
the A°-module structure given by » and « instead of > and < and the
coproduct takes values in U, x,,U instead of U, x, ,U. We refer to
Kadison-Szlachanyi for details.

Remark

The opposite of a left bialgebroid (U, A, s, t*, Ay, €) yields a right
bialgebroid (U°P, A, t*,s°, Ay, €). The coopposite of a left bialgebroid
is the left bialgebroid given by (U, A°P, t¢, s* A e).
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Definition

(Schauenburg) A left bialgebroid U is called a left Hopf algebroid or
x o Hopf algebra if the Hopf Galois map «ay

>U®Aop u, — U<,®ADU’ U@pop V. —> ua ®A v,

is a bijection. We adopt for all u e U the following (Sweedler-like)
notation
Uy ®gop U_ =y (U ®4 1) (0.3)

and the map u — u; ®qop u_ is called the translation maps.

Example
If A=k, U is a left Hopf algebroid if and only if U is a Hopf algebra
and u; @ u_ = um) ® S(u)).
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Definition
Likewise, U is called a left opHopf algebroid if the Galois map «, is a
bijection.

a U@V — URsU u®'v — uyv®aup).

We set
U @ Uiy == 0o (1 ®a ), (0.4)

and the map v +— v ®"* uj_y is called translation maps.
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Definition
Likewise, U is called a left opHopf algebroid if the Galois map «, is a
bijection.

a U @WU — U®aU u®@v = v ®a up).

We set
UL " U = ar’l(l ®a u), (0.4)

and the map v +— v ®"* uj_y is called translation maps.
Example

If A=k, Uis a left opHopf algebroid if and only if U.oop is @ Hopf
algebra and up ® u_y = up) ® S (u()).
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Definition

Let W be a right B-bialgebroid. Then W is called a right Hopf
algebroid (=RHB), respectively a right opHopf algebroid (=RopHB)
if the Galois maps

B, resp. [, is a bijection.

Be: W, ®p . W - W, @ .W, wey—yw®Hew?
B WR W, — W®W w®y — wl ®yw).
Bop
In either case, we adopt the following (Sweedler-like) notation:

wowh = B Hw®l), wi-lowlt! .= 6,_1(1®W), V we W,

for the translation maps.
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The example provide by Lie Rinehart algebras
In this example A will be a commutative k-algebra. The vector space
of derivations of A, Der(A), is endowed with a natural A-module

structure.
Definition
(Rinehart 1962) A Lie Rinehart algebra (or Lie algebroid) over A is a
triple (L, [—, —], p) where
o [—,—]:LxL— Lisa k-Lie algebra
o Lis a (finitely generated projective) A-module
o p:L— Der(A) (the anchor) is an A-module morphism and a
Lie algebra morphism.
o VX, Yel, VaeA

[X,aY] = p(X)(a)Y + a[X, Y].
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Examples

Example 1: L = Der(A) and p = id.
Example 2: A= k. Then p =0 and L is a k-Lie algebra.
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Examples

Example 1: L = Der(A) and p = id.

Example 2: A= k. Then p =0 and L is a k-Lie algebra.

Example 3: (M, {—, —}) is a Poisson manifold with Poisson bivector
e (M, A2TM), the A = C*®(M)-module of global differential one
forms ['(T*M) is endowed with a Lie Rinehart algebra structure over
A as follows :

o The anchor p: [(T*M) — ['(TM) is the map defined by 7.
o If w; and w, are two global one forms

[w17w2] = Lﬂﬁ(wl)(w2) - Lﬂu(wz)(wl) + 7T<w17w2>‘

More algebraically: For any a, b, u,v € A,
o [adu, bdv] = a{u, b}dv — b{v, a}du + abd{u, v}
o p(adu) = a{u, —}.
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To a Lie Rinehart algebra is associated its enveloping algebra

_T(AeL)

Ua(L) 7

where J is the two sided ideal generated by the relations: For all
a,be A forall D,A €L,

@ a®b—ab
@ DRA-A®D-—[D,A]
@ D®a—a®D — p(D)(a)
@ a®D—aD
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Examples
@ If A=k, Lis a Lie algebra and we recover the enveloping
algebra of a Lie algebra.
@ If M is a C*-manifold and L = I'(TM) the enveloping algebra of
the Lie Rinehart algebra (I'(TM), id) is the algebra of globally
defined differential operators.

(Rinehart 1962) PBW theorem holds for Ua(L) if the A-module L is
projective.
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If Lis a k — A- Lie Rinehart algebra, Us(L) is endowed with a
standard left bialgebroid structure as follows (Xu):

@ Forallac A s'(a) =t'(a) = a
@ The coproduct A is defined by

VacA, A(a)=a®1l, VDel, AD)=D®1+1®D

@ ¢(D) =0and ¢(a) = a.
Moreover, Ua(L) is a left Hopf algebroid. The translation maps is
determined by the equalities: For all a€ A and all D € L.

a,®a =a®l
D,®D_-=D®1-1®D.

As Ua(L) is cocommutative, it is also (op)Hopf.

Sophie Chemla (Sorbonne Université) Left Hopf algebroid-(quasi)-Frobenius London, July 2023 15/35



If Lis a k — A- Lie Rinehart algebra, Us(L) is endowed with a
standard left bialgebroid structure as follows (Xu):

@ Forallac A s'(a) =t'(a) = a

@ The coproduct A is defined by

VacA, A(a)=a®1l, VDel, AD)=D®1+1®D

@ ¢(D) =0and ¢(a) = a.
Moreover, Ua(L) is a left Hopf algebroid. The translation maps is
determined by the equalities: For all a€ A and all D € L.

a,®a =a®l
D,®D_-=D®1-1®D.

As Ua(L) is cocommutative, it is also (op)Hopf.

If L is projective, Ua(L) satisfies the PBW theorem (see Rinehart) .
It is a projective A-module but not finitely generated. To get a
finitely generated projective left Hopf algebroid, one can take k of
characteristic p and take the restricted enveloping algebra U, (L).
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Let (U, A) be a left bialgebroid. We set
Ux := Hom,(,U, A) and U* := Hom s (U., A),

called, respectively, the left and right dual of U.

The two dual are endowed with an A®-ring structure, and even a right
bialgebroid structure under finiteness and projectiveness conditions
(Kadison-Szlachanyi).
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The case of U":
For a € A, let us introduce the two elements s*(a) and t*(a) of U*
defined by

Vue U, <ti(a),u>=a<eu>, <s

r

*

*(a),u >=< ¢, us'(a) > .

(0.5)
Endowed with the following multiplication, U* is an associative
k-algebra with unit e: For all ¢,¢' € U* and all ue U

(w.00) = (' (uw. 6))ua. ') (06)

Then sf : A— U* and t} : A% — U* are algebra morphisms and
define an A®-ring structure on U*:

peaa=¢s(a) and a»ro¢ =t (a).

The product on U* can be written :

(w06 ) = (v 17 (. 6)) 0 (07)
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If U, is a finite projective A°°-module, the following formula defines a
coproduct on U* :

Curt 6y = ut((d 00)) . ow) = (. dws((d b)) )

Lastly we have a counit n € U*

(1,¢) = n) (0.8)
Thus (U*, A, s*, t*, A, n) is a right bialgebroid.

YYr 0 tr
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If U, is a finite projective A°°-module, the following formula defines a
coproduct on U* :

Curt 6y = ut((d 00)) . ow) = (. dws((d b)) )

Lastly we have a counit n € U*

(1,¢) = n) (0.8)
Thus (U*, A, s*, t*, A, n) is a right bialgebroid.

YYr 0 tr

The case of U,: If .U is a finite projective A-module, U, is
endowed with the right bialgebroid structure over A such that

(Ucoop)* = (U*)coop.
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Similarly, if W is a right bialgebroid over A, its left dual ,W and its
right dual . W are endowed with left bialgebroid structure over A.
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Similarly, if W is a right bialgebroid over A, its left dual ,W and its
right dual . W are endowed with left bialgebroid structure over A.

Theorem

(Schauenburg (2017), explicit formulas by Kowalzig)
If U is a left Hopf algebroid, then U* (respectively U, ) is a right
(op)Hopf algebroid.
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Hopf modules
Left-left Hopf modules are the objects of study of the fundamental
theorem for Hopf modules (Larson-Sweedler). The latter states that,
if H is a k-Hopf algebra, there is an equivalence of categories
between left-left Hopf modules and k-vecteor spaces. Left-left Hopf
modules can be defined in the case of Hopf algebroids (in the sense
of Bohm), in the framework of bimonads over a monoidal category
(Bruguieres-Virelizier) and in the context of Hopf categories
(Batista-Caenepeel-Vercruysse). In all these cases, the
Larson-Sweedler theorem for Hopf modules was proved. We will use
only a part of this theorem that follows from a flat descent argument
(due to Brzezinski).
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Definition
1) Let (W, B,s", t", A, 0) be a right bialgebroid over the k-algebra A.
We will say that M is endowed with a right-right Hopf W-module
structure if
o (i) M is endowed with a right W-module structure.
o (ii) M is endowed with a right W-comodule structure denoted
AM.
o (iii) These two structures are linked by the following relation :
forallme M, we W and be B

m(y W) ® m = Ay (mw).
(iv) m- b = ms"(b).

2) Left left Hopf modules are defined over a left bialgebroid.
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Example

If N is a right A-module, then N ®4, W is a right right Hopf
W-module as follows: For all (w,v) e W? and all ne N,

(N®@arw)-v=nRa wv and Apg,w(n@w)=nQ wm) Q wy)

It follows from the fundamental theorem for Hopf modules
(Larson-Sweedler for Hopf algebras, Bohm for Hopf algebroids,
Bruguieres-Virelizier for Hopf monads, Batista-Caenepeel-Vercrruysse
for Hopf categories, etc... ), that : if W is a right Hopf algebroid and
under flatness conditions, all right right Hopf W-modules are of this
type (up to isomorphisms).
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Theorem

([C]) Let U be a left Hopf left bialgebroid such that U, is a finitely
generated projective A°°-module, then U* is a right Hopf algebroid

with translation map
¢ € U* > ¢_ ®¢+ E, U>l< ®Aop Uj
If pe U* and ue U,

u- 9? ULt (< u g > )]

) u<1®A> €;

where (e;, eF) is the dual basis of the right finitely generated
A°P-module U,.
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From the Larson-Sweedler theorem for Hopf modules, we deduce an
isomorphism of right U*-modules and right U*-comodules

>UCOV®A U;k ~ U
Uu®¢o — Uy

But U = {ue U, Vve U, uv=s'(u)v}isthe A-module of left
integrals of U.

Remark

Case of Hopf algebras (Larson-Sweedler), case of Hopf algebroid
(Bohm).
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Frobenius extensions
A monomorphism of k-algebras s : A — U defines an A®-module
structure on U : Forall (a,b) € A%, ue U,

a-u-b=s(a)us(b).

As usual, a- u- b will be denoted a > u <« b. Recall that an A®-module
structure on U defines an A°-module structure on U, as follows :

Forall v € Uy, ae A, v e U,

arp=s(a) -1, <yYeav>=<i,v>a

It is also endowed with the left U-module structure given by the
transpose of the right multiplication

Ve Uy, Y(u,v)e U?, (v —)(u) =(uv).
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Definition
(Karsch 1954) A monomorphism of k-algebras s : A — U is called a
Frobenius extension if

@ .U is finitely generated and projective

@ The U ® A°°-modules yU, and U,, are isomorphic
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Proposition
([C]) Let (U, A, s*, t*, A’ €) be a left Hopf algebroid such that the
A°-module U*, is flat. The extension t*: A% — U is Frobenius if
and only if

@ U, is a finitely projective A°P-module

Q. (Si) is a free A-module of rank 1.

The proof follows from the Larson-Sweedler theorem for Hopf
modules.
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Remarks

@ If A= kis a field, the k-algebra U is Frobenius if and only if the
monomorphism k — U is a Frobenius extension.

@ Pareigis showed that a A-Hopf algebra (with A commutative)
satisfying the two conditions of the theorem is Frobenius.

@ Bohm : Case of Hopf algebroid:

@ M.C. lovanov and L. Kadison investigated when a weak Hopf
algebra is Frobenius.

® Morita showed that the monomorphism s : A — U is a
Frobenius extension if and only if the restriction functor is a
Frobenius functor.
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Definition
(Muller 1971) Recall that an A°-module structure on U defines an
A¢-module structure on U, as follows : For all ¥ € Uy, ae A,ve U,

ary=s(a) -, <yp<av>=<i,v>a

Endow U, with the left U-module structure given by the transpose of
the right multiplication

Ve U,, VY(u,v)eU? (v—)(u)=v(uv).

A monomorphism of k-algebras s : A — U is called quasi-Frobenius if
@ .U is finitely generated and projective

@ The U ® A°-module U, is a direct summand in a finite direct
sum of copies of U,..
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Remarks

@ Quasi-Frobenius functors were introduced by
|glesias-Nastasescu-Vercruysse (2010). The monomorphism
s : A— U is a quasi-Frobenius extension if and only is the
restriction functor is a quasi Frobenius functor.

@ Pareigis (1964) showed that a finitely generated projective Hopf
algebra over a commutative ring is quasi-Frobenius.

@ Bohm-Nill-Szlachanyi showed that weak Hopf algebras are
quasi-Frobenius.
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Proposition
([C]) Let (U, A, s*, t*) be a left Hopf algebroid such that the
A°P-module U*. is flat. The extension t: A%® — U is
quasi-Frobenius if and only if

@ U, is a finitely projective A°P-module

Q. (Sﬁ) is a finitely generated projective A-module.
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In this section, we apply our theory to the restricted enveloping
algebra of a restricted Lie-Rinehart algebra. We will assume that k is
a field of characteristic p.

Definition
Let A be a commutative k-algebra and let (A, L, (—)[7],w) be a
restricted Lie-Rinehart algebra. The restricted universal enveloping

Ua(L)
algebra Uj(L) = ~DP_DIPl. Del>

We set J'(L) = [Ua(L")]*.
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Examples
@ If A=k, recover a restricted Lie algebra and its restricted
enveloping algebra.
@ If L = Der(A), recover the algebra of differential operators over
A.
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Proposition

Assume that L restricted Lie-Rinehart algebra which is is a finitely
generated projective A-module with a rank. Set J,(L) = [Ua(L)']".
Then Sf&( 0 and Si‘( ) are projective A-module of rank one. Thus,
s A— Uy(L), st:A— Jy(L) and tL : A— J,(L) are
quasi-Frobenius extensions.

They are Frobenius extension if L is a finitely generated free
A-module.

Remark
The case of a Lie algebra had been proved by Berkson in 1964.
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